Follow us on X
Follow us on LinkedIn
Subscribe to newsletter

Publication: Prussian Blue Analogues as Anode Materials for Battery Applications: Complexities and Horizons

Prussian blue (PB) and Prussian blue analogues (PBAs) are a class of porous materials composed of transition metal cations, cyanide ligands, and alkali metal cations. Their ability to intercalate and deintercalate ions within their framework pores, coupled with the adaptability of their crystal structure to electrochemical changes, underpins their success in battery applications. PBAs with Fe or Co as the active site exhibit high redox potentials (vs SHE) and have been extensively explored as cathode materials, with well-documented chemistry, crystal structures, and electrochemical properties. In contrast, PBAs with Cr or Mn as the active site display lower redox potentials and remain significantly underexplored as anode materials. This gap has led to fewer reported compounds and a less comprehensive understanding of their structural and electrochemical behavior, leaving the field relatively opaque. In this perspective, we comprehensively analyze the challenges involved in producing and employing PBAs with low redox potentials as active battery materials. Conversely, we propose numerous horizons and ask fundamental questions that should pave the way for future research to advance the field.

Read the full article here.